Asian Journal of Transfusion Science
Home About Journal Editorial Board Search Current Issue Ahead of print Back Issues Instructions Subscribe Login  Users: 85 Print this page  Email this page Small font sizeDefault font sizeIncrease font size 

CASE REPORT Table of Contents   
Year : 2021  |  Volume : 15  |  Issue : 2  |  Page : 250-252
A successful booster umbilical cord blood transplantation for a 10-year-old patient with beta-thalassemia major in India

Department of Clinical Haematology and Bone Marrow Transplant, Ruby Hall Clinic, Pune, Maharashtra, India

Click here for correspondence address and email

Date of Submission13-Jul-2020
Date of Decision13-Dec-2020
Date of Acceptance06-Jun-2021
Date of Web Publication01-Nov-2021


Beta-thalassemia major is characterized by a genetic deficiency in synthesis of beta-globin chains, resulting in reduced levels of functional hemoglobin. It is characterized by anemia, hepatosplenomegaly, and iron overload due to repeated blood transfusion. Hematopoietic stem cell transplantation is currently the only known curative treatment. We present a case of a 10-year-old girl with beta-thalassemia major who was successfully cured with allogeneic booster umbilical cord blood (UCB) transplantation with outcome data after 3 years of transplantation, in India. Postdiagnosis, she was on regular once-a-month blood transfusion until the age of 10 years, with no improvement. No serious adverse events occurred in the patient post-UCB transplantation. Chronic graft versus host disease was limited and was managed by medicines. Signs of primary graft rejection were also not seen.

Keywords: Beta-thalassemia major, human leukocyte antigen-matched sibling, umbilical cord blood transplantation

How to cite this article:
Ramanan V. A successful booster umbilical cord blood transplantation for a 10-year-old patient with beta-thalassemia major in India. Asian J Transfus Sci 2021;15:250-2

How to cite this URL:
Ramanan V. A successful booster umbilical cord blood transplantation for a 10-year-old patient with beta-thalassemia major in India. Asian J Transfus Sci [serial online] 2021 [cited 2023 Mar 24];15:250-2. Available from:

   Introduction Top

Beta-thalassemia major (Cooley's anemia or homozygous beta-thalassemia), a clinically severe disease, results from mutation in two beta-thalassemia alleles, one on each chromosome.[1] These patients require sequential blood transfusions without which they may develop severe skeletal deformities along with hepatosplenomegaly.[2] Continuous transfusions may not be feasible for all owing to cost and associated complications.

Stem cell transplant is the only curative treatment option for these patients. The first umbilical cord blood (UCB) transplant for this was performed in 1993.[3] Since then, it has emerged as a superior source of hematopoietic stem cells (HSCs). Mesenchymal stem cells present in UCB help lower the risk of graft versus host disease (GvHD).[4] Age is a critical factor that determines success of UCB transplant.[5] Hence, this report presents a case of a 10-year-old girl with beta-thalassemia major.

   Case Report Top

The patient was a 10-year-old girl with symptomatic beta-thalassemia major, diagnosed at 3 months. Her parents were diagnosed with beta-thalassemia minor gene (intervening sequence 1–5 [G-C] mutation) using amplification refractory mutation system polymerase chain reaction (PCR) analysis. Thus, the fetus could have beta-thalassemia minor, but her condition was confirmed by hemoglobin electrophoresis to be beta-thalassemia major. She then underwent once-a-month blood transfusion regularly until the age of 10 years, with no improvement. Her parents planned a second baby hoping to treat her with UCB preservation and transplant from her younger sibling (a probable donor). Accordingly, they preserved the UCB with Biocell®, a cord blood bank run by Regrow Biosciences Pvt. Ltd in September 2012 when their second baby, a female, was born and approximately 60 ml UCB was collected within 24 h and sent to the Biocell® laboratory for processing (double sedimentation spin method), and it was cryopreserved successfully.

Later, this UCB was analyzed for hematology, viability, and other factors [Supplementary Table 1] and was recorded free from infectious agents [Supplementary Table 2]. Human leukocyte antigen (HLA) testing and matching at low resolution by PCR showed a complete 6/6 match for HLA-A, HLA-B, and HLA–DRB1 phenotypes; high-resolution sequence-based typing from Applied Biosystems-Life Technologies, USA (National Accreditation Board for Hospital and Healthcare Providers-accredited lab) showed a complete 10/10 match for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 between both siblings.

Therefore, physicians requested retrieving the cryopreserved UCB for allogenic HSC transplantation. Approval from the Institutional Committee for Stem Cell Research on July 13, 2016, was received and communicated to the National Apex Committee for Stem Cell Research and Therapy on July 15, 2016, and transplant was done on July 29, 2016. [Table 1] describes the details of the stem cell product at the time of cryopreservation and transplantation. Parents consented retrieval and release of cord blood unit for the planned therapy. The patient was not splenectomized prior transplantation, and Pesaro risk classification was not performed, as pretransplantation liver biopsy was not a routine procedure at the treating hospital. Owing to high ferritin level and liver size >5 cm below costal margin, the patient was deemed Lucarelli Class III.
Table 1: Characteristics of stem cell product

Click here to view

Blood components helped maintain hemoglobin (80 g/L) and platelets (20 × 109/L). For prophylaxis against fungal infections and cytomegalovirus (CMV) reactivation, fluconazole 5 mg/kg daily and acyclovir, respectively, were prescribed from day 1 post transplant. Cotrimoxazole was given for pneumocystis jiroveci infection on day + 14 post transplant. Acyclovir and cotrimoxazole were continued up to day 180 until T-cell function was restored. Quantitative CMV PCR before transplantation was negative. Parenteral nutrition was given during anorexia.

No serious adverse events (AEs) were observed post transplantation. She was engrafted promptly with 100% donor chimerism that was persistent until final follow-up. Absolute neutrophil count exceeded 0.5 × 109/L on day 17 (14–25 days). She became red cell- and platelet-independent on days 32 and 36, respectively. No signs of graft rejection were seen. Mild hepatic veno-occlusive disease, acute Grade 2 GvHD, and CMV interstitial pneumonia were observed. Methylprednisolone and mycophenolate were given to manage chronic GvHD. No other AEs occurred during follow-up.

Posttransplant follow-up was at 3 years posttransplant. Cumulative reports showed improvement in blood cells, and serum ferritin levels (standard: 4.63–204.00 ng/ml) normalized (633.0 ng/ml) against prior-to-implant levels (2451.18 ng/ml) that clinically correlated with reduced iron overload by transfusion. Liver profile also improved when correlated clinically. At 3.5 years (February 21, 2020), she was well and did not require transfusion.

   Discussion Top

This case describes successful allogeneic booster UCB transplantation in a 10-year-old girl diagnosed at 3 months with beta-thalassemia major. She received UCB from her younger sibling. No posttransplant serious AEs were notified within follow-up and signs of primary graft rejection were absent. She reported well with improved liver profile and no requirement for transfusion 3.5 years post transplantation.

Current regimen for these patients includes RBC transfusions (suppresses endogenous hematopoiesis) and deferoxamine (parenteral chelation therapy). Splenectomy is appropriate upon increased transfusion requirements for normal growth. Bone marrow transplant (BMT) is the only curative therapy when performed early-on,[6],[7] and only <30% of patients have HLA-matched siblings who can be donors,[8] significantly limiting BMT utility. Moreover, after HLA-identical sibling BMT, the incidence of acute GVHD grade II is considerably high of about 15%–30% in pediatric nonmalignant disorders.[9] Thus, we need alternative sources of stem cells for curative therapy of beta-thalassemia major.

Allogeneic UCB transplantation from related/unrelated donors are increasingly used for treating children with malignant/non-malignant diseases.[7],[9] Several studies highlighted their advantages, including rapid donor availability, tolerance of less-stringent HLA matching, reduced viral contamination and incidence, and severity of acute and chronic GvHD.[7],[8],[9] Compared to other HSC sources, cell dosing correlates with clinical outcomes rather than HLA matching in patients transplanted with UCB. We used booster UCB to complement BMT (UCB plus stem cells) and adding UCB stem cells increases the amount of infusion hematopoietic progenitors. Moreover, booster UCB also reduces the volume of bone marrow stem cells required for transplantation to achieve adequate number of MNCs in the graft without placing the donor at the same risk as that for standard stem cell collection.[10] Although it is reported that prognosis of beta-thalassemia worsens with age, in this case report, we overcame most limitations and successfully performed UCB and stem cell transplant in a 10-year-old girl using UCB from her 3-year-old HLA-matched sibling. Thus, this report shows that patients >10 years of age can be successfully cured with allogenic booster cord blood transplantation rather than performing a regular BMT.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient's parents have given consent for the patient's images and other clinical information to be reported in the journal. The patient's parents understand that name of the patient and initials will not be published and due efforts will be made to conceal identity, but anonymity cannot be guaranteed.


The author acknowledges the CBCC Global Research for providing writing and submission assistance for this manuscript.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   Supplementary Tables Top

   References Top

Origa R. Beta-Thalassemia. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: [Last updated on 2021 Feb 04].  Back to cited text no. 1
Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010;5:11.  Back to cited text no. 2
Fang J, Huang S, Chen C, Zhou D. Unrelated umbilical cord blood transplant for beta-thalassemia major. J Trop Pediatr 2003;49:71-3.  Back to cited text no. 3
Godoy JA, Paiva RM, Souza AM, Kondo AT, Kutner JM, Okamoto OK. Clinical Translation of Mesenchymal Stromal Cell Therapy for Graft Versus Host Disease. Front Cell Dev Biol 2019;7:255.  Back to cited text no. 4
Cohen YC, Scaradavou A, Stevens CE, Rubinstein P, Gluckman E, Rocha V, et al. Factors affecting mortality following myeloablative cord blood transplantation in adults: A pooled analysis of three international registries. Bone Marrow Transplant 2011;46:70-6.  Back to cited text no. 5
Gaziev J, Lucarelli G. Stem cell transplantation for hemoglobinopathies. Curr Opin Pediatr 2003;15:24-31.  Back to cited text no. 6
Locatelli F, Rocha V, Reed W, Bernaudin F, Ertem M, Grafakos S, et al. Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood 2003;101:2137-43.  Back to cited text no. 7
Kelly P, Kurtzberg J, Vichinsky E, Lubin B. Umbilical cord blood stem cells: Application for the treatment of patients with hemoglobinopathies. J Pediatr 1997;130:695-703.  Back to cited text no. 8
Soni S, Boulad F, Cowan MJ, Scaradavou A, Dahake J, Edwards S, et al. Combined umbilical cord blood and bone marrow from HLA-identical sibling donors for hematopoietic stem cell transplantation in children with hemoglobinopathies. Pediatr Blood Cancer 2014;61:1690-4.  Back to cited text no. 9
Goussetis E, Peristeri J, Kitra V, Kattamis A, Petropoulos D, Papassotiriou I, et al. Combined umbilical cord blood and bone marrow transplantation in the treatment of beta-thalassemia major. Pediatr Hematol Oncol 2000;17:307-14.  Back to cited text no. 10

Correspondence Address:
Dr. Vijay Ramanan
Department of Clinical Haematology and Bone Marrow Transplant, Ruby Hall Clinic, 40, Sassoon Road, Pune - 411 001, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ajts.ajts_109_20

Rights and Permissions


  [Table 1]



    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  

   Case Report
   Supplementary Tables
    Article Tables

 Article Access Statistics
    PDF Downloaded209    
    Comments [Add]    

Recommend this journal

Association Contact us | Sitemap | Advertise | What's New | Copyright and Disclaimer | Privacy Notice

2006 - Asian Journal of Transfusion Science | Published by Wolters Kluwer - Medknow
Online since 10th November, 2006